全國高級中等學校專業群科 114 年專題實作及創意競賽「創意組」作品說明書

群別:電機與電子群

作品名稱:VORTEX

關鍵詞:RFID、無線鍵盤、環境友善

目錄

壹	`	創意	動	機	及目的	1
			_	` ;	創意動機	1
			=	` ;	創意目的	1
貳	`	作品	,特	色	及創意特質	2
			_	` .	無須電池	2
			=	`	可更換鍵帽	2
			Ξ	` ;	磁吸式上蓋及底座	2
			四	` :	輕量化	2
			五	`	高度客製化	2
			六	`]	IP68 防水防塵	2
參	`	創意	發	想	與設計過程	2
			_	` ;	創意發想	2
			=	•)	研究流程	3
					(一)、六月中旬到八月中	
				((二)、八月中旬到九月初	3
				((三)、九月初到十一月初	3
				((四)、十一月初到十二月中旬	3
			Ξ		硬體製作	
				((一) 3D 繪圖與列印	4
				((二)雷射切割	4
					(三)電路板設計	
				((四)、軸體底部設計	5
肆	`	設計			原理	
			—		RFID 技術	
				((一)、RFID Reader	6
					(二)、指向型天線	
					(三)、標籤(Tag)	
					法拉第籠效應	
					八木天線	
			四	` ;	程式控制	9
伍	`	作品			與操作方式1	
					作品功用1	
			二		操作方式1	
					(一)、主機端1	
				((二)、巨集鍵1	1

陸、製作歷程說明	12
一、RFID 技術研究	12
(一)、壓電材料	12
(二)、RFID 技術	12
二、撰寫程式	
(一)、讀取 RFID 訊號	
(二)、輸出 RFID 指令	12
(三)、組合鍵搭配布林值	13
(四)、組合鍵復歸判	13
(五)、長按短按 RFID 檢測機制	13
(六)、巨集鍵	13
三、硬體設計	14
(一)、軸體製作	14
(二)、定位板設計	14
(三)、鍵盤裝飾蓋、底板設計	14
四、軟硬體整合	15
(一)、鍵盤	15
(二)、主機端	15
五、專題完成	15
柒、附錄	16
一、作品分工表	16
二、競賽日誌	17

圖目錄

啚	1 時間分配表	. 3
昌	2 Autodesk Inventor	. 4
昌	3 鍵盤底座	. 4
昌	4 Bambu Studio	. 4
圖	5 RD Works	. 4
昌	6 定位板雷射切割檔	. 4
昌	7 Altium Designer	. 5
昌	8 繪製電路圖	. 5
昌	9 PCB 電路板	. 5
昌	10 標籤偏轉	. 5
昌	11 軸體銅箔	. 5
昌	12 按鍵未被按下	. 6
昌	13 按鍵被按下	. 6
昌	14 RFID Reader	. 6
啚	15 指向型天線	. 7
啚	16 RFID Tag	. 7
昌	17 底座的八木天線	. 8
啚	18 Arduino DUE	. 9
昌	19 中文打字	10
啚	20 英文打字	10
啚	21 主機端	10
置	22 固定主機端	11
置	23 巨集鍵鍵帽	11
置	24 鍵盤整體	11
邑	25 軸底銅箔	14
昌	26 連接桿	14
圖	27 鍵盤機構	14
圖	28 專題成品	15
昌	29 成品展示	15

表目錄

表	1 RFID Reader 規格表	6
表	2 指向型天線規格表	7
表	3 RFID Tag 規格表	7
表	4 Arduino DUE 規格表	9

(VORTEX)

壹、創意動機及目的

一、創意動機

在現今科技快速發展的時代,無線設備已成為日常生活的重要一環,其中無線鍵盤是許多人使用電腦時標準配備。然而,無線鍵盤的普及同時也帶來了一個環保問題:電池作為無線設備所依賴的供電源,它的生產與回收往往會造成許多環保上的問題。

台灣一年生產 8000 噸的廢電池,可是其中只有 49%的廢電池被回收,廢棄的電池對環境的污染極為嚴重,其中在回收時可能滲出有毒物質,如汞、鉛和鎘等,對土壤和水源會造成長期且難以根除的污染。因此,減少對一次性電池的依賴,並尋求更為環保的解決方案,已成為當今電子產品設計的重要課題。

RFID 技術作為一種低功耗的無線通信技術,為解決這一問題提供了新的可能。將 RFID 技術應用於無線鍵盤,不僅能減少對電池的依賴,還能簡化鍵盤的設計,進而提升鍵盤耐用度,從而有效減少電子廢物的產生,達到環保的目標。

透過設計,使鍵盤能夠實現在沒有電源的情況下判斷按鍵的狀態, 且能在無需傳統有線或常見無線連接技術的情況下,提供更環保的使 用。這樣的技術為未來的無線鍵盤及其他無線控制設備的發展提供了 新的思路與實現方式。

二、創意目的

基於對環境保護的關注,我們製作了一款不需要電池的無線鍵盤, 透過 RFID 技術進行設備間的無線訊號傳輸,以此達到:

- (一)、減少對於一次性電池的依賴,以達到環境友善的目的。
- (二)、增加產品壽命來減少資源浪費。

貳、作品特色及創意特質

一、無須電池

由於搭載RFID 技術,使訊號之間的傳輸只需透過感應即可完成, 脫離了傳統無線鍵盤對於電池的依賴。

二、可更換鍵帽

透過參考市售無線鍵盤的軸體設計,使本專題能依照使用者的個人喜好,自行更換市售的鍵帽。

三、磁吸式上蓋及底座

透過上蓋與底板之連接使用磁吸式設計,讓使用者不需要裝卸螺絲,即可拆解鍵盤本體,不但方便檢修,還便於清理,使鍵盤能隨時保持整潔。

四、輕量化

鍵盤本體幾乎都使用 PLA 材料所 3D 列印而成,不但減少鍵盤本身的重量,也由於 PLA 材料可生物降解,使整體鍵盤的生產能更加環保。

五、高度客製化

由於鍵盤幾乎都由 3D 打印而成,透過更換打印材料,可自由搭配鍵盤的配色,小至軸體;大到鍵盤底部,讓使用者能隨心所欲的打造屬於自己的鍵盤。

六、IP68 防水防塵

本專題由於使用 RFID 技術作為主要傳輸技術,去除了市售鍵盤所需的電路板,因此達到了 IP68 的防水防塵,讓使用者能夠放心的使用。

參、創意發想與設計過程

一、創意發想

起初在思考專題題目時,意外的發現國外有公司將電磁感應融入 地磚,讓行人們經過即可使地磚產生能量,供給路燈等發光裝置。這 不經讓我們開始思考,若能將此種概念結合到其他設備,是否能設計 出更加節能且環保的裝置,於是開始了一連串的研究。

二、研究流程

本專題「VORTEX」自六月中旬確定專題目標後,便開始了緊湊 且有條不紊的製作過程。以下是詳細的研究時程(如圖 1):

(一)、六月中旬到八月中

由於原先的方案是使用壓電材料和低功耗藍牙作為鍵盤的 主要架構,可是實驗過後發現,這種方式無法當作穩定且有效的 電源,所以在網路上搜尋可行的方式。

(二)、八月中旬到九月初

在蒐集資料並評估各種方案後,發現 RFID 作為替代方案具有相當的可行性,便購買 RFID 相關材料,包括 Arduino DUE 板、RFID Reader、RFID Tag 等相關零件,並研究此方案是否可以實現專題的目標。

(三)、九月初到十一月初

確認方案的可行性後,開始撰寫鍵盤的主要程式,及設計鍵盤軸體機構和鍵盤整體外觀。

(四)、十一月初到十二月中旬

進行專題的軟體及硬體整合,並測試最終功能進行細部調校; 完成相關文件及影片說明。

三、硬體製作

(一) 3D 繪圖與列印

我們利用高二跨領域課程中,在製圖科上課所學到的 Autodesk Inventor 軟體(如圖 2),來繪製鍵盤的主要結構(如圖 3), 並使用 Bambu Studio(如圖 4)來列印元件。

由於軸體精密度高,不允許任何瑕疵導致邊緣不平整。經歷 各種嘗試過後,更換了 3D 列印的熱床材質並且塗上白膠、以及 增加擋風措施後,才能確保每一顆鍵軸都在公差之內。

Inventor

圖 2 Autodesk Inventor

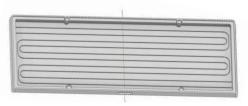


圖 3 鍵盤底座

圖 4 Bambu Studio

(二)雷射切割

我們利用高二「電子學實習」課程中,在上課時所學到的 RDWorks V8 軟體(如圖 5),再藉由繪製完成 Inventor 草圖後,轉 換雷射切割檔案(如圖 6),匯出後進行壓克力切割。

圖 5 RD Works

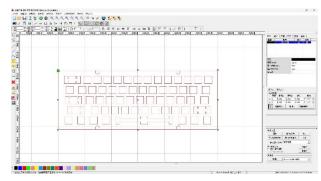


圖 6 定位板雷射切割檔

(三)電路板設計

我們利用高二「電子學實習」課程中,在上課時所學到的Altium Designer 軟體(如圖 7),繪製電路圖(如圖 8)及設計 PCB電路板(如圖 9),並使用電路板雕刻機將設計好的 PCB電路板轉換鑽孔檔與成型檔,輸出連接到電路板雕刻機,進行 PCB電路板製作。

圖 7 Altium Designer

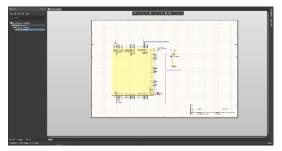


圖 8 繪製電路圖

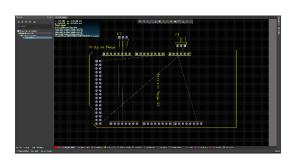


圖 9 PCB 電路板

(四)、軸體底部設計

為了使本專題能夠穩定的執行指令,因此透過個別調整標籤的偏轉角度(如圖 10)搭配軸體貼上菱形銅箔(如圖 11)及配合標籤的設定,藉此達到穩定傳輸訊號的效果。

圖 10 標籤偏轉

圖 11 軸體銅箔

肆、設計相關原理

一、RFID 技術

RFID 是一種基於無線訊號傳輸的自動識別技術,允許物品、設備或人的身份識別、追蹤和管理,而不需要直接接觸或可視範圍內的物理接觸。透過無線訊號來交換數據,實現物品的自動識別與信息收集。

透過按鍵按壓時產生的間隙改變耦合狀態,藉此實現在鍵盤無源的情況下判斷是否按下按鍵:

若按鍵未被按下,射頻訊號將耦合於屏蔽罩上(如圖 12);若按鍵被按下,耦合狀態發生改變,使標籤接收訊號並回傳(如圖 13)。

圖 12 按鍵未被按下

圖 13 按鍵被按下

使用元件如下:

(一)、RFID 讀取器 (RFID Reader)

RFID Reader (如圖 14、表 1)的基本工作原理是通過發射無線電波,與 RFID 標籤進行通信。RFID 標籤內含有芯片和天線,可以存儲簡單的識別信息,當 Reader 發射射頻信號時,標籤會通過天線接收信號並將其內部數據傳送回 Reader。根據標籤的類型和工作方式,RFID 標籤可以分為有源式、半有源式和無源式,本專題採用無源式進行開發。

圖 14 RFID Reader

表 1 RFID Reader 規格表

RFID	Reader
工作電壓	3.6V~5.5V
RAM	8KB
工作頻率	840~960MHz
發射功率	12.5~20dBm

(二)、指向型天線

透過指向型天線(如圖 15、表 2)發射射頻訊號,使無緣式標籤接收訊號後可提供訊號輸出。為了避開一般常用的頻率,因此我們採用 900MHz 的射頻訊號作為傳輸的頻率。

圖 15 指向型天線

表 2 指向型天線規格表

天	線
工作頻率	902~982MHz
增益	8dbi

(三)、標籤(Tag)

標籤(如圖 16、表 3)接收天線所發射的射頻訊號後,可反射 16 進制的代碼,作為個別按鍵的識別碼,以利 Arduino DUE 開發 板接收訊號後,輸出正確指令。

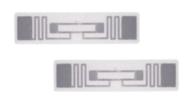


圖 16 RFID Tag

表 3 RFID Tag 規格表

RFID	Tag
工作頻率	840-960MHz
尺寸	26 x 12 mm
工作溫度	-40°C~85°C

二、法拉第籠效應

當外部電場接觸到法拉第籠的導電表面時,會發生以下過程: 導體表面的自由電子會受到外部電場的作用力,電子會在導 體表面移動,並在極短時間內達到新的平衡。

移動後的電子在表面形成新的電荷分佈,正電荷區域會出現 在電場方向的一側;負電荷區域會出現在電場相反方向的一側。 重新分佈的電荷會產生自己的電場,這個內部電場方向與外 部電場相反,兩個電場在籠內相互抵消,最終導致籠內電場強度 趨近於零。

當變化的磁場靠近法拉第籠時:根據法拉第電磁感應定律, 磁通量變化會在導體中產生感應電動勢,感應電動勢使導體中產 生感應電流

感應電流產生自己的磁場,這個磁場阻礙原來磁場的變化, 符合楞次定律的方向性

感應磁場與外部磁場相互抵消,導致籠內磁場強度顯著降低, 且屏蔽效果隨頻率增加而增強

三、八木天線

為了提升射頻訊號的傳輸距離,並減少訊號衰減及干擾的影響, 我們選用 900MHz 的射頻訊號並配合八木天線技術,在鍵盤底部埋設 30cm 導線(近似於 900MHz 波長)(如圖 17)使其與射頻訊號共振並輻 射能量,從而減少一般網路與藍牙頻段的干擾。

圖 17 底座的八木天線

四、程式控制

利用高二「智慧居家監控實習」所學到的 Arduino IDE 開發環境來編寫程式控制 RFID 模組,透過 KLM 900 模組偵測 EPC 標籤,透過 Arduino DUE 輸出其相對應的組合動作或文字,其中採用高二實習所教授的「物件導向」寫法,在 private 中處理所有按鍵邏輯,在 public 中處理 RFID 的命令與偵測,使動作更加明瞭順暢。

由於一般 RFID 標籤的 EPC 編碼較長,但對於本專題來說並不需要這麼多的處理資訊來判別標籤。因此,未來若開發新的系統來減少處理的資訊量可以增加我們的鍵盤效能。

本專題使用 Arduino DUE 作為控制核心晶片,相較其他 Arduino 板具有更高的處理能力且支援 HID 設備,可透過 Native Port 撰寫程式 用於模擬鍵盤功能,因此我們選用此開發板作為本專題的控制中樞,接收 RFID 的訊號並輸出對應的指令。(如圖 19、如表 4)

圖 18 Arduino DUE

表 4 Arduino DUE 規格表

Aduino DUE 開發板						
輸入數	54 個					
工作電壓	3.3V					
SRAM	96KB					
尺寸	101.6x53.34(mm)					
重量	36g					

伍、作品功用與操作方式

一、作品功用

經過不斷的嘗試與深入探討,本次專題以 RFID 作為主要研究方向,藉由 RFID 技術傳輸訊號,使鍵盤能夠更穩定且顧及環保的需求 (如圖 19、圖 20),未來可朝相關設備應用發展並設計更加穩定且有效的通訊技術,使人們的生活能大幅減少對一次性電池的依賴。在硬體上則是透過軸體的設計,讓使用者能夠依照自己的喜好,自行更換市面上大多數的鍵帽。

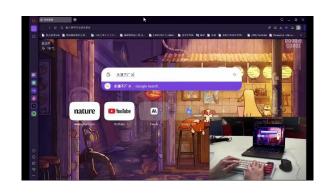


圖 19 中文打字 二、操作方式

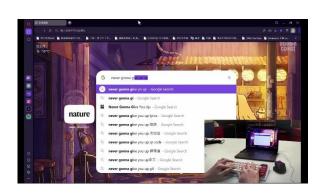


圖 20 英文打字

(一)、主機端

利用支架將天線、RFID Reader 及 Arduino DUE 板組合(如圖21),以下是操作步驟:

圖 21 主機端

- 1、主機端貼合於桌面底部(如圖 22)。
- 2、將主機端和電腦 USB 孔連接
- 3、將鍵盤置於天線所設範圍內即可進行鍵盤之操作。

圖 22 固定主機端

(二)、巨集鍵

由於我們使用 RFID 技術,在傳輸訊號相對容易,針對 RFID 傳輸的 EPC 碼綁上名稱,再根據此 EPC 碼撰寫內部程式即可,因此我們製作無痕模式按鍵(如圖 23、24),操作與普通按鍵短按一樣,即可輸出一連串按鍵巨集的動作,省去手動打字操作的麻煩及時間。

圖 23 巨集鍵鍵帽

圖 24 鍵盤整體

陸、製作歷程說明

一、RFID 技術研究

(一)、壓電材料

研究剛起步時,我們將壓電材料作為主要研究方向,期待正 壓電效應能作為無線鍵盤的主要供電,可在實驗過後發現,雖然 電壓符合要求,可是電能所持續的時間太短,無法作為穩定且有 效的電源,便開始研究其他技術的可能性。

(二)、RFID 技術

在經過理論支持和多次實驗下,RFID 技術不但無需使用電池,也能提供訊號傳輸,符合我們初衷,作為本專題的技術核心可說是不二選擇。

二、撰寫程式

(一)、讀取 RFID 訊號

我們採用 EPC 碼末三節做綁定,因此利用「指標」指向接收到的 16 進制 EPC 碼數據倒數第三個字節,開始讀取並存放字節到數據陣列中,利用 memcmp (memory compare)函式,比對數據陣列中存放的字節,若符合組合鍵 EPC 碼,則設置布林值進入組合邏輯,普通按鍵則根據接收到的訊號做出按鍵邏輯。

(二)、輸出 RFID 指令

根據模組規格書撰寫 16 進制字節,操控 RFID 模組的讀取指令、功率設置指令,以便在初始化時調用,其中功率設置使用 case 寫法,區分各種 dbm 指令,往後可根據使用環境調整,修改功率設定時更加容易。在初始化時統一輸出指令,固定 RFID 模組的前置設定穩定輸出。最後透過模組 TTL 接口與 Arduino 溝通,使 Arduino 替代外部 RFID Reader 軟體,成為控制 RFID 訊號收發一體的核心。

(三)、組合鍵搭配布林值

由於本專題使用的 RFID 模組是單一標籤讀取,因此在觸發組合鍵時,無法讀取兩張標籤以上的 EPC 碼,為了解決此問題,針對組合鍵(例:shift、ctrl、alt)搭配布林值,當偵測到組合鍵時,利用布林值的特性,保持狀態為高態,當放開組合鍵時不會馬上復歸,開始偵測普通陣列的 EPC 碼,若有組合鍵 struct 結構中的普通鍵按下,則會同時輸出按鍵之訊號,使主機端自動組合,達成鍵盤組合鍵之功能。

(四)、組合鍵復歸判斷

在復歸按鍵邏輯,我們參考一般鍵盤復歸機制,每 60ms 查看按鍵狀態決定是否復歸,但這會造成我們專題按下組合鍵後立即復歸來不及和普通鍵組合。因此在程式方面,我們採用「超時復歸」機制:設計在 1.5s 內偵測普通鍵做組合邏輯,若超過 1.5s 則執行復歸。透過程式設計的小巧思,在 ctrl 方面不僅能實現正常鍵盤的組合邏輯,也能達成 ctrl 常按配合滑鼠縮放螢幕的動作,讓本專題也能實現普通鍵盤的操作。

(五)、長按短按 RFID 檢測機制

RFID 天線輸出讀取訊號速度以用來偵測 EPC 碼是 50 次/s,為了讓操作順利,透過程式編寫改成每 0.1s 進行偵測,並記錄讀取到的 EPC 碼訊號次數,讀取一次時即輸出短按,隨後若仍有訊號,次數則累加,若偵測次數大於 3 時,保持持續按下狀態。

考量到環境內存在其他 EPC 碼及鍵盤雜訊,可能會打斷長按訊號,因此設計 0.2s 的時間容忍值,擴增雜訊包容範圍,確保長按動作順暢。

(六)、巨集鍵

為了減少省去手動打字操作的麻煩及時間,我們追加了無痕 模式的巨集鍵,讓使用者一鍵即可開啟無痕。

三、硬體設計

(一)、軸體製作

為了使鍵盤能夠執行正常動作,於是在軸體底部貼上銅箔(如圖 25),使鍵軸未被按下時,能屏蔽住射頻訊號,我們將標籤貼於連接桿上(如圖 26),且藉由彈簧的回彈特性,使鍵軸被釋放時連接桿能回歸原位並屏蔽標籤訊號。

圖 25 軸底銅箔

圖 26 連接桿

(二)、定位板設計

本專題參考 60%鍵盤的外型,作為軸體擺設的依據。衛星軸 開孔則沒有採用市售規格,為客製化規格。

(三)、鍵盤裝飾蓋、底板設計

本專題的裝飾蓋與底板之連接使用磁吸式設計(如圖 27),用 於方便檢修和便於清理。

我們融合了八木天線的概念,於底板嵌入漆包線,使訊號能 夠被放大,提供本專題更加穩定的運作。

圖 27 鍵盤機構

四、軟硬體整合

(一)、鍵盤

使用黏著劑將軸體及定位板進行黏合,並裝至於底座,最後裝上上蓋即可完成組裝。

(二)、主機端

利用支架將天線、RFID Reader 及 Arduino DUE 板組合,即組裝完畢

五、專題完成

無數的失敗與調整,才得以將我們最初的目標付諸實現,此為最終成品(如圖 28、圖 29)。

圖 28 專題成品

圖 29 成品展示

柒、附錄

一、作品分工表

参賽學生	工作任務
	1.作品發想
	2.組裝外殼
	3.軟硬體整合
	4.資料搜尋
	5.海報設計及製作
A	6.成品拍攝
	7.影片剪輯
	8.書面報告製作
	9.簡報設計及製作
	10.校內報告
	11.元件採購
	1.作品發想
	2.組裝外殼
	3.軟硬體整合
	4.硬體製作
В	5.機器操作
	6.3D 列印零件繪製
	7.說明書製作
	8.硬體物件整合與裝設
	9.雷射切割設計及製作
	1.作品發想
	2.程式編寫
	3.組裝外殼
C	4.軟硬體整合
	5.資料搜尋
	6.說明書製作
	7.財務管理

二、競賽日誌

年	月	日	進度	紀錄	工作分配
2024	06	25	初次討論主題	地點:學校	A: 查詢資料
				器材:平板	B: 意見提供
				時數:1 小時	C: 意見提供
2024	06	30	首次跟指導老師討論	地點:學校	A: 參與討論
			及決定最終主題	器材:平板	B: 參與討論
				時數:1 小時	C: 參與討論
			討論程式	地點:自家	A: 參與討論
2024	07	04		器材:平板、電腦	B: 繪製外觀模型
				時數:2 小時	C: 參與討論
2024	07	10	討論外觀及製作	地點:自家	A: 參與討論
				器材:電腦	B: 草稿繪製
				時數:2.5 小時	C: 參與討論
2024	07	31	開始程式撰寫	地點:自家	A: 意見提供
				器材:筆電	B: 外觀繪製
				時數:1 小時	C: 意見提供
2024	08	16	程式編寫、簡報製作	地點:學校	A: 簡報製作與討論
				器材:筆電、平板	B: 外觀製作
				時數:3 小時	C: 編寫程式
2024	09	01	第一次報告的簡報製	地點:學校科辨	A: 簡報設計及製作
			作及報告練習	器材:筆電	B: 查詢資料
				時數:3 小時	C: 查詢資料
2024	09	03	第一次報告練習、確	地點:學校科辨	A: 報告練習
			認	器材:電腦	B: 雷切繪製
			雷切草稿圖尺寸及樣	時數:2 小時	C: 編寫程式
			式		
2024	09	16	第一次專題報告	地點:學校科辨	A: 報告
				器材:電腦	
				時數:1 小時	
2024	10	10	程式撰寫、簡報製	地點:學校科辨	A: 簡報製作、買材
			作、材料採買	器材:筆電、平板	料
				時數:3 小時	B: 外觀設計
					C: 程式撰寫
2024	10	20	第二次專題報告模擬	地點:同學家	A: 報告
				器材:電腦	B: 提供意見
				時數:3 小時	C: 提供意見

2024	10	28	第二次專題報告	地點:學校科辦	A: 報告
				器材:電腦	
				時數:1 小時	
2024	10	30	程式測試、電路板設	地點:學校	A: 修改程式
			計、切割電路板	器材:電腦、平	B: 組裝
				板、Arduino	C: 修改程式
				DUE、杜邦線、	
				RFID Reader、夭	
				線、標籤	
				時數:3 小時	
2024	11	15	程式撰寫、鍵盤硬體	地點:學校科辦	A: 提供意見、討論
			設計	器材:電腦	材料
				時數:5 小時	B: 硬體設計
					C: 程式編寫
2024	11	18	從機組合和測試	地點:學校科辨	A: 測試從機
				器材:時數:8 小時	B: 測試從機
					C: 組裝從機
2024	12	15	軟硬體機構整合	地點:學校科辨	A: 軟體組合
					B: 硬體組合
				板、Arduino	C: 軟體組合
				DUE、杜邦線、	
				RFID Reader、天	
				線、標籤	
				Arduino UNO \	
				Arduinomega	
				2560、木板、按	
				鈕、喇叭、擴大	
				機模組 电影 6 小時	
2025	1	01	见山北县、භ岫旦从	時數:6 小時	A. 影片払揖。 統却
2025	1	UI	影片拍攝、整體最後 測試、簡報檢查、影		A: 影片拍攝、簡報
			川 川 川 川 川 川 川 川 川 川 川 川 川 川 川 川 川 川 川 	版、Arduino、	設計 B: 整體檢測
			刀 ガ 門 	DUE	D. 登 版
				時數:2 小時	C. 正胆双闪
2025	1	08	期末專題報告介紹專		A: 報告
2023	1		題給學弟妹	室	H: 祝日 B: 分享過程
					C: 分享過程
				時數:3 小時	777
				1 32.5 11	