臺北市立大安高級工業職業學校專題實作及創意競賽 「專題組」作品說明書

群別:電機與電子群

作品名稱:智慧安全帽

關鍵詞:API、導航、透明螢幕

目錄

壹、	摘要	1
貳、	研究動機	1
參、	主題與課程之相關性或教學單元之說明	2
	一、智慧居家監控實習	2
	二、雷射切割	3
肆、	研究方法	3
	一、研究時程	3
	二、硬體裝置	4
	三、相關軟體	6
	四、硬體研究關鍵點	7
	五、軟體研究過程	8
伍、	研究結果	.11
	一、硬體結構	11
	二、成果展示	12
陸、	討論	16
	一、導航延遲問題	16
	二、導航定位精確度	16
	三、顯示焦距問題	16
柒、	結論	17
捌、	參考資料	18
玖、	附錄	19
	一、作品分工表	19
	二、競賽日誌	19

表目錄

表	1 智慧安全帽和市面其他產品比較	. 1
-	2 ESP32	
表	3 18650 鋰電池	. 5
	4 DFR0934 透明 螢幕	

圖目錄

昌	1 3	雷射切割	3
昌	2 E	ESP32	4
昌	3 1	8650 鋰電池	5
昌	4 D	DFR0934 透明螢幕	5
圖	5 A	arduino[1]	6
圖	6 A	App Inventor [2]	5
昌	7 R	Replit[3]	6
昌	8 P	Place API & Direction API	6
昌	9 A	utodesk Invertor [4]	6
昌	10	Blender[5]	6
昌	11	RDWorksV8[6]	7
圖	12	安全帽上的電池盒	8
圖	13	連接成功	6
圖	14	傳送資料	9
圖	15	資料解析流程圖1	0
圖	16	顯示資料流程圖1	1
圖	17	機構架構1	2
圖	18	開啟電源1	2
昌	19	使用流程圖1	3
昌	20	按下開始1	4
啚	21	輸入地點	4
圖	22	選擇地點1	4
圖	23	連接設備1	4
置	24	按下開始導航1	4
圖	25	顯示資訊1	4
置	26	上傳檔案1	5
圖	27	藍芽連接1	5
圖	28	顯示資訊1	5
昌	29	到達目的地	5

【智慧安全帽】

壹、摘要

本專題設計一款帶有一個透明螢幕顯示導航資訊的安全帽,可應用於日常騎機車時使用。透過自行開發網頁及 APP 介面來選定起始點和目的地,向 Google 提供的 Google Map API 發送請求,將請求後得到的資料傳到自製的網頁後將導航資訊解析後傳回 APP,再將需要的資訊通過藍牙傳回透明螢幕,提供給使用者,讓使用者在不遮擋視野的同時能看到導航資訊(如轉向、到下個轉彎的距離、時間),也不需要低頭看手機,避免發生車禍的風險。

貳、研究動機

在台灣,機車一直是我國一種主要的交通工具,尤其近年外送產業的興起,機車的使用需求也越來越多。機車的使用越多,發生車禍的數量也越來越多,根據下圖顯示「未注意車前狀況」為排行第一,而其中看手機為其中一個主要原因,我們希望設計一款安全帽,能在眼前顯示出簡單的導航資訊且同時不遮擋使用者視野,協助改善此問題。

與市面上的其他產品相比,我們的成品「智慧安全帽」具有較長的續航能力,「智慧安全帽」的顯示主要朝向顯示出簡潔又清楚的資訊;市面上的其他產品則朝向詳細的路線,但是詳細的資訊可能造成使用者短時間放在螢幕的資訊上,進而發生危險,而與智慧安全帽的主旨「集中使用者騎車時的注意力」相違。

與市面上的相似產品比較(如表 1),我們可以看到「智慧安全帽」雖然價格親民、續航力強,但對比於其他市面上產品,「智慧安全帽」的是配性及功能多樣性遠不及市面上的其他產品,我們希望能在 App中增加調整焦距的功能,讓各個使用者能根據自身視力調整,並添加來車顯示燈,用以警示使用者,藉由這些改動讓使用者獲得更佳的騎車體驗。

特點	智慧安全帽	市面上其他安全帽
使用時長	30 小時	2.5 小時
顯示資訊	轉向、下一個彎的距離、時 間 沒有地圖	地圖加上路線、時速, 沒有轉向、距離等
其他功能	無	聽音樂、接電話
控制方式	自製的 app	自製 app、按鈕執行操作
視覺效果	簡潔清楚,但不能根據使用 者調整焦距	能適用於各個使用者,但 亮度及色彩部分較淡
成本	成本較低(約 1600)	成本較高(約 16000)

參、主題與課程之相關性或教學單元之說明

一、智慧居家監控實習

在「智慧安全帽」的製作過程中,我們巧妙地應用了高二智慧居家監控實習中學到的知識,尤其是關於 Arduino 和顯示螢幕的運用。 我們首先對 ESP32 進行了基本的配置和程式設置,確保它能夠有效地 顯示文字於螢幕上。通過這次實習,我們成功地將理論與實踐結合, 不僅增強了「智慧安全帽」的技術層面,也使螢幕能清晰地顯示關鍵 資訊,為使用者帶來更佳的導航體驗。

二、雷射切割

在「智慧安全帽」的製作過程中,我們採用了學校高三教的雷射

切割技術(如圖 1)來製造電池盒關鍵部件。此技術的應用不僅增強了機構的結構穩定性,同時也提升了美觀。

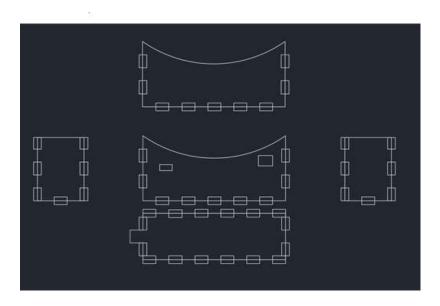


圖 1 雷射切割

肆、研究方法

一、研究時程

本專題「智慧安全帽」自六月中旬確定專題目標後,便開始了緊 湊的製作過程。以下是詳細的研究時程:

(一)、六月下旬至九月初:

完成元件的決定和採購,包括透明螢幕、ESP32、電池、安全帽等關鍵零件。開始進行初步程式建構,並開始針對 Google Map API 進行資料解析。

(二)、九月初至十一月中旬:

將協助資料解析的網頁開發完成,完成大部分軟體功能(包含選取 起始點、目的地、發送 API 請求,解析資料完成後傳回 App),完成機 構圖繪製。

(三)、十一月中旬至十二月底:

完成電池盒、ESP32 及螢幕等硬體組裝,完成藍牙資料傳輸並成功將資訊正確顯示於螢幕上。在一月初進行實際上路測試,再修改錯誤及微調 APP 功能。

二、硬體裝置

(一)、ESP32 開發版

ESP32 (如圖 2、表 2)是一款由 Espressif Systems 開發的高性能、低 功耗晶片,具備 Wi-Fi 和藍牙雙模 功能,適合物聯網應用,內建多種 外設接口如 GPIO、UART、I2C 等,

支持雙核處理與低功

ESP32				
電壓	3.3V 或 5V			
功耗	0.528 W			
處理器	Xtensa 雙核 32 位元 LX6 微處理器			
內存	320 KB SRAM			

電源供應器

耗

1

害

模式。在我們專題中,我們使用 ESP32 的藍芽功能接收來自 APP 傳送過來的資訊並控透明螢幕顯示出對應的導航資訊。

圖 2 Esp32

(二)、18650 鋰電池

18650 鋰電池(如圖 3、表 3)是我們專題的主要電力來源,擁有 3300mAh 大容量提供我們安全帽持久的續航力 (約 30 個小時),可充電,並且含有防爆 功能,讓我們的安全帽在受到撞擊時, 不會因為爆炸而對使用者造成更大的

表 2 ESP32

電壓	3.7V
輸出電流	約 450mA
輸出電壓	5V

DFR0934 透明螢幕

DFR093

圖 3 18650 鋰電池 4(如圖 4、表 3 18650 鋰電池表 4)作為市面上為數不多的透明

螢幕,讓我們在看向螢幕時,不會因螢幕的不透明性而擋住視線, 為我們的專題增加了安全性,並且提供優美的淡藍色光點,在面 對強光依然可以看清螢幕的資訊。

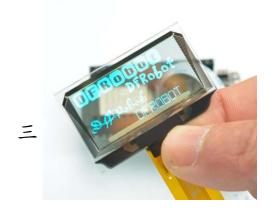


圖 4 DFR0934 透明螢幕

DFR0934					
工作電壓	3.3V				
螢幕尺寸	1.51 英吋				
驅動芯片	SGD1300				
顯示顏色	APPUING				
± 4 DED0024 活					

表 4 DFR0934 透明螢幕

軟體

(一)、Arduino

Arduino (如圖 5)作為主要的編程語言,用於 ESP32 上與手機連線和控制螢幕的顯示。ESP32 接收手機傳送的資料,並分析與統整,將分析完的資料顯示於透明螢幕上。

(二)、App Inventor

App Inventor(如圖 6)為主要的 APP 設計平台,透過拖曳式的元件和程式碼模組完成設計應用程式,在我們

的專題中,App Inventor 用於開發 APP,完成大部分軟體功能(選定起點、終點、發送 API 請求、使用藍牙傳送資訊給 ESP32)。

(三)、Replit

Replit (如圖 7)是一個線上編程平台,允許用戶在瀏覽器中直接編寫、執行和分享代碼。它支援多種編程語言,包括 Python、JavaScript、Ruby 等。在我們的專題中使用 Replit 開發了一個網頁,用來分析 Direction API 的資訊。

圖 6 App Inventor[2]

圖 7 Replit[3]

(四)、 Place API & Direction API

Place API 和 Direction API(如圖 8)是地圖應用的核心工具。Place API 用於查詢地點資訊,提供附近搜尋、自動補全、地點詳細資料及照片等功能,適合用於尋找目的地。Direction API 則負責規劃從一地到另一地的路線,支援駕車、步行、大眾運輸等多種交通方式,並考慮即時路況,適合提供導航與路線規劃。兩者結合可實現地點搜尋與路徑導航的完整體驗。

圖 8 Place API & Direction API

(五)、Autodesk Inventor

Autodesk Invertor (如圖 9)作為一款強大的 3D 繪圖軟體,在專題中提供我們製作出精緻的機構圖,在後續的動畫製作及硬體組裝提供強大的支援。

圖 9 Autodesk Invertor [4]

(六)、Blender

Blender(如圖10)是一款受歡迎的開源3D建模 渲染引擎。它在我們專題中被用於製作機構的3D 模型,以及輔助設計,讓我們能精確地評估專案 的可行性。以及提升報告的精美度。

(七)、RD Works V8

RD Works V8(如圖 11)是一款功能強大的雷射切割軟體,支持從簡單到複雜的切割任務。軟體提供直觀的設計界面,允許我們精確地繪製和布局切

6

割圖形,並設定合適的切割參數,如切割速度、功率和精確度。我們利用 RD Works V8 進行零件的設計和佈局,並精確地控制雷射切割機的操作,以確保零件的質量和一致性。

四、硬體研究關鍵點

(一)、透明螢幕

在確認好專題的製作內容後,我們便開始構思硬體結構,為了在不影響視線的情況下能顯示導航資訊,所以我們使用 DFR0934 來當作主要顯示螢幕。

(二)、電池盒製作

使電池盒能更穩固的固定在安全帽,我們運用強大的數學觀念, 算出安全帽的弧度,並繪製在 RDWorksV8 上(如圖 12),進行雷射切割 並組裝,安裝在安全帽上。

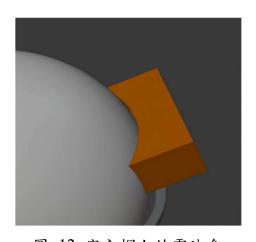


圖 12 安全帽上的電池盒

五、軟體研究過程

(一)、App 與 Esp32 連接

將手機的 APP 與 Esp32 連接有兩種方式,我們的專題是使用藍牙的方式進行傳輸,藍牙傳輸屬於近距離通信,無需依賴網路;相較於 WIFI 節省數據流量,因為通信是在本地進行,而且藍牙配對簡單,設置方便,但是經過實測,藍牙的傳輸延遲大,重複傳輸資料不能過於頻繁(後來設置 3 秒傳輸一次),避免發生資料來不及傳輸的問題。

本專題使用 App Inventor 的藍牙元件來與 ESP32 進行雙向通信(如圖 13、14)。ESP32 可以作為藍牙伺服器,App Inventor 作為客戶端來發送和接收資料。

圖 13 連接成功

圖 14 傳送資料

(二)、開發解析資料的網頁

我們使用 Replit 來開發網頁,不同於大部分網頁的功能,我們的專題並未使用網頁來實施控制或操作什麼功能(一切操作都在APP 中執行),我們只運用 Replit 中支援的 JavaScript 來解析 Directions API 的資料並回傳給 APP。

(三)、Directions API 資料解析

API 資料從請求到解析完成流程圖(如圖 15)。

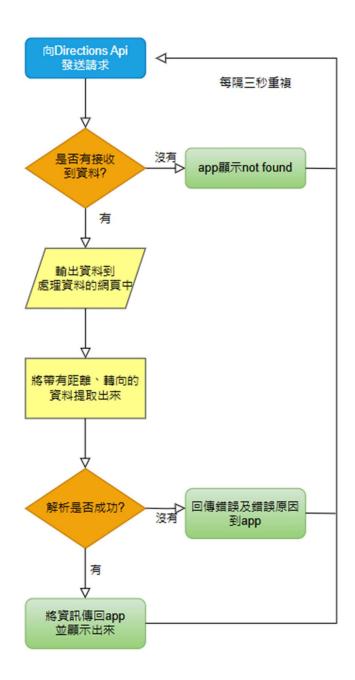


圖 15 資料解析流程圖

(四)、藍牙

我們運用藍牙傳輸資料給 ESP32, 顯示出需要的導航資訊(如圖 16)。

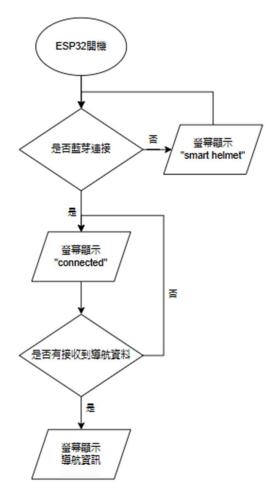


圖 16 顯示資料流程圖

伍、研究結果

一、硬體結構

本專題為了達到便利性與相容性採用了最廣泛的安全帽樣式來 做為「智慧安全帽」的主要架構(如圖 17)。

「智慧安全帽」的機構是外掛在安全帽外面的,元件增加的重量並不會影響到騎士配戴的舒適度,我們透過雷射切割木板,再組裝成電池盒的外框,並將其固定在安全帽後方。透明顯示螢幕則固定在位於左眼前的安全帽帽簷下方。將 ESP32 放在安全帽帽簷上方,放此處不僅讓螢幕控制線路更加的順暢,線也不會拉太長。

圖 17 機構架構

二、成果展示

(一)、戴上安全帽並開啟電源

戴上安全帽並開啟後方電池盒的電源開關後,確認螢幕是否出現「Smart Helmet」的文字(如圖 18)。

圖 18 開啟電源

確認功能無誤後打開 app 開始以下操作,進行導航,開啟使用者的行車體驗,使用流程(如圖 19)。

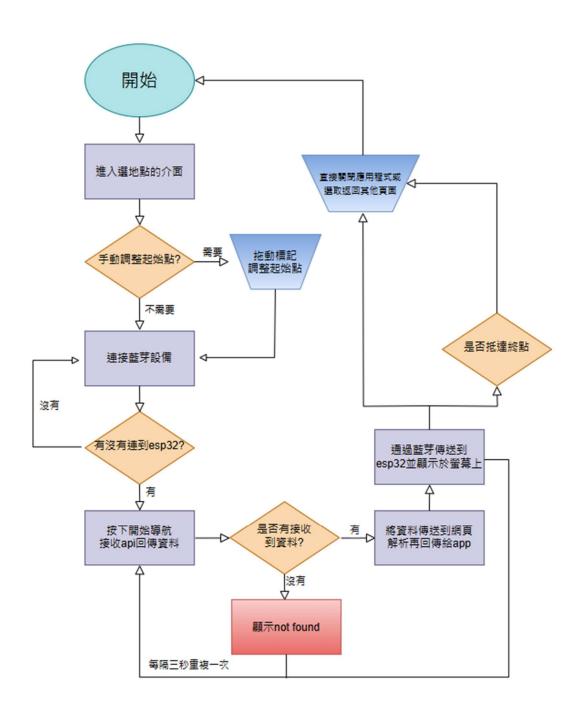
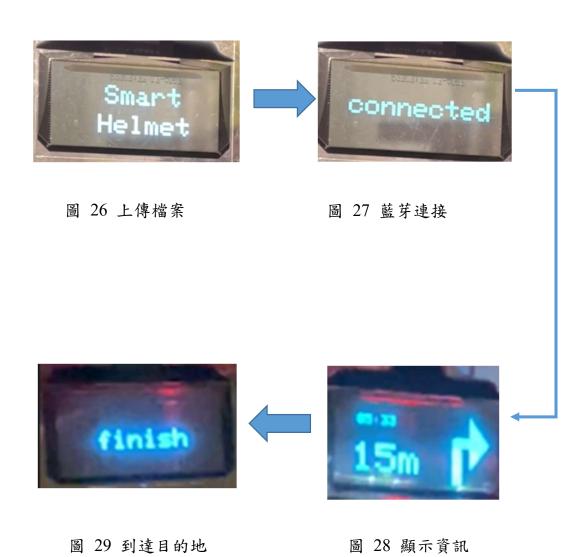


圖 19 使用流程圖

(二)、實際畫面及螢幕顯示

1、APP 畫面

圖 25 顯示資訊



大安森林公園

圖 24 按下開始導航

圖 23 連接設備

2、螢幕

陸、討論

一、導航延遲問題

不管是 APP 操作、API 請求、API 資料解析及藍牙資料傳輸皆有一定的延遲時間(約 100~150 毫秒),但是這些延遲加在一起必定會對使用者造成一些影響,導致使用者體驗不佳。未來希望能改善此問題,例如:使用 WIFI 傳遞資料(延遲較藍牙傳輸低)。

二、導航定位精確度

導航定位會因為延遲、訊號受阻等原因導致位置浮動,導致定位 位置不準確,進而發生導航指示給出錯誤資訊,未來可能結合數據校 正、減少延遲等方式改善。

三、顯示焦距問題

由於透明螢幕在安全帽內顯示資訊,需要配合各個使用者的焦距讓使用者能成功看到螢幕上的資訊,未來希望能在 APP 上新增焦距提整功能,透過選擇近遠視的度數改變螢幕顯示,使不同視力少用者都能順利地看到資訊。

柒、結論

本專題智慧安全帽結合多項技術,提供摩托車騎士更加安全與便利的導航體驗。我們的設計整合了透明螢幕(DFR0934)作為顯示介面,透過 Google Maps API 獲取即時導航資訊,並利用 Replit 平台開發網頁進行 API 資料解析。此外,我們透過 App Inventor 開發了手機應用程式,實現導航資料的查詢與傳輸,並採用 ESP32 作為藍牙傳輸的核心模組。整體系統運作順暢,成功完成了資訊從雲端到螢幕的即時傳遞。

我們的智慧安全帽設計以透明螢幕為特色,能夠在不影響騎士視線的情況下提供導航指示,提升行車安全。藍牙傳輸的應用,實現了手機與頭盔之間的即時連接,大幅減少了有線連接的困擾。為了提升使用效率,我們選擇 Replit 平台進行方向 API 資料解析,並以JavaScript 編寫資料處理邏輯,將結果回傳至 App Inventor 開發的應用程式中。ESP32 的高效能和低功耗特性,則確保了整個系統的穩定運作。

智慧安全帽的開發過程不僅讓我們學習了多項跨領域的技術,也 讓我們充分體會到團隊合作的重要性。本專題的成功完成證明了結合 創新技術與實際需求的可能性,對未來智慧交通工具的發展具有參考 價值,並且在技術更新快速的時代,我們的專題相信會迎來更好的改 進(像是可以彎曲的透明螢幕、新增各種功能提升便利性等)。

捌、參考資料

- 1. Arduino,取自於 https://zh.wikipedia.org/zh-tw/Arduino
- 2. App inventor , 取 自 於 https://appinventor.mit.edu/explore/ai2/beginner-videos
- 3. replit,取自於 https://research.contrary.com/company/replit
- 4. Autodesk Invertor,取自於 https://test.iscloud360.com/Mall/Cloud_service_brand_page?BrandExte ndID=1&Product_id=30
- 5. Blender,取自於 https://commons.wikimedia.org/wiki/File:Blender_logo_no_text.svg
- 6. RD WoksV8, 取自於 https://www.print3dd.com/product/rdworks-v8/

玖、附錄

一、作品分工表

參賽學生	工作任務	
A	程式撰寫、架設網頁、APP 開發、 藍芽連接、書面報告製作、海報製作、影 片剪輯、拍攝影片	
В	程式撰寫、螢幕顯示、藍芽連接、 書面報告製作、拍攝影片、硬體製作	
С	報告、PPT 製作、拍攝影片	
D	機構介紹動畫、拍攝影片	

二、競賽日誌

年	月	日	進度	紀錄	工作分配
113	7	30	資料蒐集	地點:教室 器材:手機、電腦 時數:3 小時	同學 A:資料查詢 同學 B:資料查詢
					同學 C: 資料查詢 同學 D: 資料查詢
113	8	3	討論主題	地點:教室 器材:手機、筆電、紙 時數:3小時	同學A:討論主題 同學B:討論主題 同學C:討論主題
113	8	10	結構討論 功能討論	地點:教室 器材:手機、筆電、紙 時數:3小時	同學 D: 討論主題 同學 A: 功能討論 同學 B: 功能討論
113	8	25	材料購買	地點:微處理機實習教室	同學 C: 結構討論 同學 D: 結構討論 同學 A: 材料購買
				時數:3 小時	同學 B:材料購買同學 C:材料購買同學 D:材料購買
113	9	5	討論專題細節	地點:科辦 器材:手機、筆電 時數:7小時	同學A:功能討論 同學B:功能討論 同學C:結構討論 同學D:結構討論

113	9	6	討論專題細節	地點:科辦	同學 A:功能討論
			1 1 mm -1 /2 // M	器材:手機、筆電	同學B:功能討論
				時數:1小時	同學 C: 結構討論
					同學 D: 結構討論
113	9	19	程式撰寫	地點:實習工廠	同學 A: 程式撰寫
			結構設計	器材:手機、筆電	同學B:程式撰寫
			10000	時間:7小時	同學 C: 結構討論
					同學 D: 結構討論
113	10	3	程式撰寫	地點:實習工廠	同學 A: 程式撰寫
			結構設計	器材:手機、筆電	同學B:程式撰寫
			11,500	時間:7小時	同學 C: 結構討論
				147 161 • 1 × 1 × 147	同學 D: 結構討論
113	10	17	程式撰寫	地點:實習工廠	同學 A: 程式撰寫
			結構設計	器材:手機、筆電	同學B:程式撰寫
			1,7 1,7 52 1	時間:7小時	同學 C: 結構討論
				147 161 • 1 × 1 × 147	同學 D: 結構討論
113	10	31	APP 開發	地點:實習工廠	同學 A: 程式撰寫
			程式撰寫	器材:手機、筆電、雷	
				射切割機、	同學 C: X
				時間:7小時	同學 D∶X
113	11	14	APP 開發	地點:實習工廠	同學 A: 程式撰寫
			程式撰寫	器材:手機、筆電、雷	
			1/1 2 (1)X M	射切割機、螺絲起子	同学 B: X (工作) (本) (工作) (工作)
				時間:7小時	同事 D: X
113	11	20	A DD HE JÝ	V V	
113	11	28	APP 開發	地點:實習工廠	同學 A:程式撰寫
			程式撰寫	器材:手機、筆電	同學 B: X (工科賽)
				時間:7小時	同學 C:X 同學 D:X
113	12	11	APP 開發	地點:實習工廠	同學 A:程式撰寫
			程式撰寫	器材:手機、筆電	同學 B: X(工科賽)
			14-5/424 WA	時間:3 小時	同学 B: X (工作) (本) (工作) (工作) (工作) (工作) (工作) (工作) (工作) (工作
				竹川・3 小竹	月
113	12	12	APP 開發	地點:實習工廠	同學 A: 程式撰寫
			程式撰寫	器材:手機、筆電	同學B:程式撰寫
				時間:7小時	同學 C: X
				Lad 160 2 1 14 1 ad	同學 D: X
<u> </u>					

113	12	25	冶 却 割 <i>儿</i>	11回,帝四一宁	口段 4・ と 切 制 ル
113	12	23	海報製作	地點:實習工廠	同學 A:海報製作
			硬體鑽孔	器材:手機、筆電	同學 B: 程式撰寫
				時間:3小時	同學 C:海報製作
					同學 D: 硬體鑽孔
113	12	26	程式撰寫	地點:實習工廠	同學 A:程式撰寫
			螢幕顯示	器材:手機、筆電、雷	同學 B:程式撰寫
				射切割機、螺絲起子	同學 C:X
				時間:7小時	同學 D: X
113	12	28	硬體製作	地點:實習工廠	同學 A: 軟體測試
			成品測試		同學 B: 硬體整合
				時間:8小時	同學 C: X
					同學 D: X
113	12	29	硬體製作	地點:實習工廠	同學 A: 軟體測試
			成品測試	器材:手機、筆電	同學B:硬體整合
				時間:8小時	同學 C: X
					同學 D: X
114	1	2	硬體整合	地點:實習工廠	同學 A:軟體測試
				器材:手機、筆電、	同學 B: 軟體測試
				時間:7小時	同學 C: 硬體整合
<u> </u>	1.	<u> </u>			同學 D:機構圖動畫繪製
114	1	5	影片拍攝	地點:實習工廠	同學 A:影片拍攝
				器材:手機、筆電	同學B:影片拍攝
				時間:7小時	同學C:影片拍攝
					同學 D: 影片拍攝
114	1	6	成品測試	地點:實習工廠	同學 A: 軟體測試
			簡報製作	器材:手機、筆電	同學 B: 軟體測試
				時間:7小時	同學 C: 簡報製作
					同學 D: X
114	1	7	簡報製作	地點:實習工廠	同學 A: 影片剪輯
			報告訓練	器材:手機、筆電	同學 B:協助簡報製作
				時間:7小時	同學 C: 簡報製作
					同學 D:X